	TANTA UNIVERSITY- Faculty of Science -Department of Physics					
	FINAL TERM EXAM FOR SENIORS STUDENTS OF MATERIAL SCIENCE- 2ND LEVEL					
	COURSE TITLE:		Mechanics	COURSE CODE: MS2131		
DATE:	3 FEB. 2021	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED:120 MINS		

Answer the following questions:

Please indicate your answers clearly in the space provided. Useful constants and conversion factors are provided ($g = 10 \text{ m/s}^2$).

Question 1

(20 marks)

- 1- A 1.0 kg object travelling at 1.0 m/s collides head on with a 2.0 kg object initially at rest. Find the velocity of each object after impact if the collision is perfectly elastic?
- 2- A ball of mass m= 0.100 kg is thrown straight up into the air with an initial speed of 15.0 m/s. Find momentum of the ball at halfway up of its maximum height?

Question 2

(25marks)

- 1- A block with mass m₁=10 kg rests on an inclined plane as shown in the figure. What is the mass m₂ must be attached to the cord in order to prevent the block from sliding down?
- 2- An object of mass 100 g travelling at 5.0 m/s enters a region of ice where the coefficient of kinetic friction is μ_k =0.10. By using the work-energy theorem to find the distance the object travels before coming to rest?

 m_1 m_2 m_3

Question 3

(25 marks)

- 1- The position of a particle moving under uniform acceleration is function of time (t) and acceleration (a). If we write this equation as: $S = ka^mt^n$, where k is a dimensionless constant. Show by dimensional analysis that this expression is satisfied if m=1 and n=2, can this analysis give the value of k?
- 2- The minimum distance required to stop a car moving at 35.0 (mil/hr) is 40.0 ft. What is the minimum stopping distance for the same car moving at 70.0 (mil/hr), assuming the same rate of acceleration?
- 3- A plane drops a package of emergency rations to a party of explorers. If the plane is traveling horizontally at 50.0 m/s and 100 m above the ground. Where does the package strike the ground relative to the point at which it is released?

_	<i>tion 4</i> The SI base unit of į	mpulse is:	(30 n	narks)				
a)	N.s	b) N/s	c) Kg.m/s	d) a&c				
2-	If an electron (mass kinetic energy of 6.7	possible temperature has a						
a)	1.21 x 10 ⁶ m/s	b) 2.21 x 10 ⁵ m/s	c) 3.21 x 10 ⁶ m/s	d) 4.21 x 10 ⁵ m/s				
3-	An object of mass 1g is whirled in a horizontal circle of radius 0.5 m at a constant speed of 2.0m/s. The work done on the object during one revolution is:							
a)	1 Ј	b) 2 J	c) 4 J	d) 0 J				
4-	Graphically the res 25m, 300° and 15m,	sultant "magnitude 210 ⁰) are given by:	and direction" of th	ree vectors (20m ,45º &				
	a) $20.3m \& 312^0$	b) 15.1 m& 250°	c) 10.2m& 220°	d) 9.3m & 199 ⁰				
5-	i- (ALSO 6 and 7) A 3kg block starts from rest at the top of 30° incline fractional surface an slides a distance of 2m down the incline in1.5 s. Then: i- The acceleration of the block is:-							
,	0.5 m/s ² The friction force act	b) 1.20 m/s ²	c) 1.78 m/s ²	d) 2.45 m/s ²				
	5.40 N	b) 9.66 N	c) 13.4 N	d) 15.3 N				
7-	The coefficient of kin	netic friction between	he block and the plane	is:				
a)	0.12	b) 0.21	c) 0.29	d) 0.37				
8-	1 rev. = 360° =							
	a) $2\pi rad$	b) $3\pi rad$	c) $4\pi rad$	d) π rad				
9-	The instantaneous ta	ingential velocity vector	tor is always	to the radius vector for				
		b) perpendicular		-,				
10-	A wheel rotates wi	th a constant angula	ar acceleration of 3.5	$50 rad/s^2$. If the angular				

EXAMINER

rotate in 2.00 s?:

a) 5 rad

b) 7 rad

PROF. ALI IBRAHIM

d) 11 rad

© BESTWISHES ©

speed of the wheel is 2.00 rad/s at ti = 0. Through what angle does the wheel

c) 9 rad

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS BIOPHYSICS LEVEL 2 EXAMINER DR. AYMAN ELTAHAN COURSE TITLE: Classical Mechanics COURSE CODE: MS 2131 DATE:30 JAN, 2021 TERM: FIRST TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

Final Exam

Answer the fowling questions:

First question:

1-	Che	ose	the	cor	rect	an	swer	•

_	If two different masses moved (A) They will moved with (B) They will moved with (C) They will moved with (D) They will moved with	a different acceleration the same acceleration a a different acceleration	nd different forces and different forces	! ***
	Anybody moves under the effe	ects of		
	(A) The force that the body exerts	(B) The force acting on it	(C) Both of A and B	(D)Frictional force
	Right Now you are at rest acceleration?	on a chair. Ignoring	the rotation and orbit	of the earth, what is you
	(A) zero	(B) 9.8 m/s	(C) 9.8 m/s^2	(D) 9.8 N

- V The velocity of object become constant, when
 - (A) The net force acting (B) The acceleration (C) Both A and B (D) None of them. on it is equal to zero.

velocity of zero.

2- An object of mass 20 kg is at rest. A net force of 10 N is applied for 5 s. what is the final velocity? How far will the object have moved in the 15 s interval?

Second question:

velocity of zero.

- 1- A block with a mass m = 10 kg rests on an inclined plane (30° with a horizontal). What mass M must be attached to the cord in order to prevent the block from sliding down?
- 2- Find an expression for the work kinetic energy theorem for rotational motion?
- 3- State the types of physical quantities and Newtonian mechanics.

velocity of zero.

velocity of zero.

Third question:

- 1- Write short notes about: The frictional force, impulse, inertia, parallel axis theorem and Kinetic energy.
- 2- A 0.250 kg puck, initially at rest on a horizontal, frictionless surface is struck by a 0.160 kg puck moving initially along the x axis at a speed of 2.60 m/s. After the collision, the 0.160 kg puck has a speed of 1.40 m/s at an angle of $q = 57.0^{\circ}$ to the positive x axis.
 - a) Determine the velocity of the 0.250 kg puck after the collision.
 - b) Find the fraction of kinetic energy loss in the collision.

3- Correct the wrong if found;

- a) When a zero net torque τ acts on an object, the object gains angular acceleration.
- b) Rate of angular momentum represented by the force.
- c) The body size is a measure of its inertia.
- d) The frictional force has the same direction of object motion.
- e) The momenta of the individual objects in the system may change, so the vector sum of all the momenta will change also.

Fourth question:

1- A projectile object has initial velocity 10⁵ m/s² at angle 60⁰ with a horizontal, find

a) The maximum height of this projectile?

b) The horizontal distance when the projectile moves down at the same level of the start point?

2- Complete the sentences:

- a) In ----- collision, momentum is conserved, kinetic energy is not, and the two objects stick together after the collision.
- b) The magnitude of the linear velocity v of a point on the rolling object depends on ---.
- c) A body remains in its state of rest or uniform motion in a straight line unless acted by -----.
- d) When a cylinder rolls with slipping on a flat surface that is called-----.
- e) According to Newton's second law the net force acting on an object of mass is related to the rate of

Best wishes

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

EXAMINATION OF THERMODYNAMICS (SCOND YEAR) STUDENTS OF MATERIAL SCIENCE

COURSE TITLE: Thermodynamic of material COURSE CODE MS 2141

DATE: 20-3-2021 TERM: 1 TOTAL ASSESSMENT MARKS: 150 TIME ALLOWED: 2 HOURS

Q1-Choose the correct answer (40)

- 1- What will be the work done by 3 moles of an ideal gas when it expands spontaneously in a vacuum? (a) zero (b) infinite (c) 3 joules (d) 9 joules
- 2- All mediums have (a) One specific heat (b) Two specific heats (c) Three specific heats (d) None
- 3- Integral of dQ/T is independent of reversible path connecting between two points.
- a) true b) false
- 4- Entropy is a a) path function, intensive property b) path function, extensive property c) point function, intensive property d) point function, extensive property
- 5- The entropy of an isolated system can never ___a) increase b) decrease c) be zero d) none of the mentioned
- 6- The Gibbs function is defined as a-G=U+PV+TS b-G= U-PV-TS
- c- G=U+PV-TS d-G=U-PV+TS
- 7- Work done on a system is taken to be a) positive b) negative c) zero
- d) varies according to situation
- 8-Thermodynamic properties are a) point function b) path function c) depends on the state
- d) none of the mentioned
- 9- For a process in which pV=C, work done is a) zero b) p*(V2-V1) c) p1*V1*ln(V2/V1) d) none of the mentioned
- 10-A system in which even energy is not allowed to cross the boundary is called (a) closed system (b)extensive system (c) isolated system (d)special system
- 11-The system in which there is a flow of mass is known as (a) equilibrium system (b) isolated system (c) open system (d) closed system
- 12-The enthalpy H=U+pV then which of the following relation hold true

(a)
$$\left(\frac{\partial H}{\partial S}\right)_P = T$$
, $\left(\frac{\partial H}{\partial P}\right)_S = V$ (b) $\left(\frac{\partial H}{\partial S}\right)_P = -T$, $\left(\frac{\partial H}{\partial P}\right)_S = V$

$$(c) \left(\frac{\partial H}{\partial S}\right)_{P} = V , \left(\frac{\partial H}{\partial P}\right)_{S} = T$$

$$(d) \left(\frac{\partial H}{\partial S}\right)_{P} = V , \left(\frac{\partial H}{\partial P}\right)_{S} = -T$$

13-The temperature of reservoir of Carnot's engine operating with an efficiency of 70% is 1000K. The temperature of its sink is— (A) 300 K (B) 400 K (C) 500 K

- 14- Internal energy of a perfect gas depends on:
- (a) Temperature only
- (b) Temperature and pressure
- (c) Temperature, pressure and specific heats
- (d) None of the above
- 15- An ideal gas is taken through a closed path $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$. What is the net work
- done by the gas? (A) 6PV
- (B) 9PV
- (C) 4PV
- (D) -6PV
- (E) -

9PV

Q2-a- Show that if F is known as a function of V and T,

$$H = F - T \left(\frac{\partial F}{\partial T} \right)_{V} - V \left(\frac{\partial F}{\partial V} \right)_{T}$$

h. Show that

 $C_{P} = \left(\frac{d^{i}q}{dT}\right)_{P} = \left(\frac{\partial u}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P}$

$$w = \frac{1}{1 - \gamma} (p_2 v_2 - p_1 v_1)$$
- Show that

d-Drive the equation of entropy of ideal gas as a function of P and V. (50)

Q3 a -Calculate the work done by a steam of mass 0.01 kg at temperature 126° C, in an isothermal process of the initial and final volumes are 2X10-3 and 20X10-3m3

in an adiabatic process.

respectively. The state equation is given by P=RT $\left(\frac{1}{V} + \frac{B}{V^2} + \frac{C}{V^3}\right)$ B=-142.2X10-6 m3/mole C=-7140X10-12 m6/mole

b-At 27°C, two moles of an ideal monatomic gas occupy a volume V. The gas is adiabatically expanded to a volume 2V.

- (a) Calculate the ratio of final pressure to the initial pressure
- (b) Calculate the final temperature
- (c) Change in internal energy (30)

Q4 Write short notes: equation of state of real gas -----, Joule-Thomson experiment-----, Draw Carnot cycle in P,V and T,S diagrams----. (30)

اتمنى لكم التوفيق

EX	Δ	NΛ	M	FI	R:	Ξ
	~	I۷.	ш	디	٦,	J